Pandas
The Pandas library is built on NumPy and provides easy-to-use data structures and data analysis tools for the Python programming language. Use the following import convention:
import pandas as pd
Pandas Data Structures
Series
A one-dimensional labeled array A capable of holding any data type
s = pd.Series([3, -5, 7, 4], index=['a', 'b', 'c', 'd'])
DataFrame
A two-dimensional labeled data structure with columns of potentially different types
data = {'Country': ['Belgium', 'India', 'Brazil'],
'Capital': ['Brussels', 'New Delhi', 'Brasília'],
'Population': [11190846, 1303171035, 207847528]}
df = pd.DataFrame(data,
columns=['Country', 'Capital', 'Population'])
I/O
Read and Write to CSV
pd.read_csv('file.csv', header=None, nrows=5)
pd.to_csv('myDataFrame.csv')
Read and Write to Excel
pd.read_excel('file.xlsx')
pd.to_excel('dir/myDataFrame.xlsx', sheet_name='Sheet1')
Read multiple sheets from the same file
xlsx = pd.ExcelFile('file.xls')
df = pd.read_excel(xlsx, 'Sheet1')
Read and Write to SQL Query or Database Table
from sqlalchemy import create_engine
engine = create_engine('sqlite:///:memory:')
pd.read_sql("SELECT * FROM my_table;", engine)
pd.read_sql_table('my_table', engine)
pd.read_sql_query("SELECT * FROM my_table;", engine)
read_sql()is a convenience wrapper around read_sql_table() and read_sql_query()
pd.to_sql('myDf', engine)
Asking For Help
help(pd.Series.loc)
Selection
Getting
Get one element
>>> s['b']
-5
Get subset of a DataFrame
>>> df[1:] Get subset of a DataFrame
Country Capital Population
1 India New Delhi 1303171035
2 Brazil Brasília 207847528
Selecting, Boolean Indexing & Setting
By Position
Select single value by row & column
>>> df.iloc([0],[0])
'Belgium'
>>> df.iat([0],[0])
'Belgium'
By Label
Select single value by row & column labels
>>> df.loc([0], ['Country'])
'Belgium'
>>> df.at([0], ['Country'])
'Belgium'
By Label/Position
Select single row of subset of rows
>>> df.ix[2]
Country Brazil
Capital Brasília
Population 207847528
Select a single column of subset of columns
>>> df.ix[:,'Capital']
0 Brussels
1 New Delhi
2 Brasília
Select rows and columns
>>> df.ix[1,'Capital']
'New Delhi'
Boolean Indexing
Series s where value is not >1
>>> s[~(s > 1)]
s where value is <-1 or >2
>>> s[(s < -1) | (s > 2)]
Use filter to adjust DataFrame
>>> df[df['Population']>1200000000]
Setting
Set index a of Series s to 6
>>> s['a'] = 6
Dropping
Drop values from rows (axis=0)
>>> s.drop(['a', 'c'])
Drop values from columns(axis=1)
>>> df.drop('Country', axis=1)
Sort & Rank
Sort by row or column index
>>> df.sort_index(by='Country')
Sort a series by its values
>>> s.order()
Assign ranks to entries
>>> df.rank()
Retrieving Series/DataFrame Information
Basic Information
(rows,columns)
>>> df.shape
Describe index
>>> df.index
Describe DataFrame columns
>>> df.columns
Info on DataFrame
>>> df.info()
Number of non-NA values
>>> df.count()
Summary
Sum of values
>>> df.sum()
Cummulative sum of values
>>> df.cumsum()
Minimum/maximum values
>>> df.min()/df.max()
Minimum/Maximum index value
>>> df.idmin()/df.idmax()
Summary statistics
>>> df.describe()
Mean of values
>>> df.mean()
Median of values
>>> df.median()
Applying Functions
>>> f = lambda x: x*2
Apply function
>>> df.apply(f)
Apply function element-wise
>>> df.applymap(f)
Data Alignment
Internal Data Alignment
NA values are introduced in the indices that don’t overlap:
>>> s3 = pd.Series([7, -2, 3], index=['a', 'c', 'd'])
>>> s + s3
a 10.0
b NaN
c 5.0
d 7.0
Arithmetic Operations with Fill Methods
You can also do the internal data alignment yourself with the help of the fill methods:
>>> s.add(s3, fill_value=0)
a 10.0
b -5.0
c 5.0
d 7.0
>>> s.sub(s3, fill_value=2)
>>> s.div(s3, fill_value=4)
>>> s.mul(s3, fill_value=3)
Pandas cheat sheet - Summary
I hope this Pandas cheat sheet has been helpful. The Source for this cheat sheet is available here.